MathDB
Putnam 1997 A4

Source:

May 30, 2014
Putnamfunctioncollege contests

Problem Statement

Let GG be group with identity ee and ϕ:GG\phi :G\to G be a function such that : ϕ(g1)ϕ(g2)ϕ(g3)=ϕ(h1)ϕ(h2)ϕ(h3) \phi(g_1)\cdot \phi(g_2)\cdot \phi(g_3)=\phi(h_1)\cdot \phi(h_2)\cdot \phi(h_3) Whenever g1g2g3=e=h1h2h3g_1\cdot g_2\cdot g_3=e=h_1\cdot h_2\cdot h_3 Show there exists aGa\in G such that ψ(x)=aϕ(x)\psi(x)=a\phi(x) is a homomorphism. (that is ψ(xy)=ψ(x)ψ(y)\psi(x\cdot y)=\psi (x)\cdot \psi(y) for all x,yGx,y\in G )