MathDB
Problems
Contests
Undergraduate contests
IMC
2013 IMC
2
IMC 2013/2/2
IMC 2013/2/2
Source: Imc 2013 Problem 7
August 9, 2013
floor function
Putnam
number theory
relatively prime
IMC
college contests
Problem Statement
Let
p
,
q
\displaystyle{p,q}
p
,
q
be relatively prime positive integers. Prove that
∑
k
=
0
p
q
−
1
(
−
1
)
⌊
k
p
⌋
+
⌊
k
q
⌋
=
{
0
if
p
q
is even
1
if
p
q
odd
\displaystyle{ \sum_{k=0}^{pq-1} (-1)^{\left\lfloor \frac{k}{p}\right\rfloor + \left\lfloor \frac{k}{q}\right\rfloor} = \begin{cases} 0 & \textnormal{ if } pq \textnormal{ is even}\\ 1 & \textnormal{if } pq \textnormal{ odd}\end{cases}}
k
=
0
∑
pq
−
1
(
−
1
)
⌊
p
k
⌋
+
⌊
q
k
⌋
=
{
0
1
if
pq
is even
if
pq
odd
Proposed by Alexander Bolbot, State University, Novosibirsk.
Back to Problems
View on AoPS