MathDB
China 2010 quiz4 problem 2

Source:

September 12, 2010
inequalitiesinequalities unsolved

Problem Statement

Find all positive real numbers λ\lambda such that for all integers n2n\geq 2 and all positive real numbers a1,a2,,ana_1,a_2,\cdots,a_n with a1+a2++an=na_1+a_2+\cdots+a_n=n, the following inequality holds: i=1n1aiλi=1n1ainλ\sum_{i=1}^n\frac{1}{a_i}-\lambda\prod_{i=1}^{n}\frac{1}{a_i}\leq n-\lambda.