MathDB
Sets with Polynomials

Source: ISL 2020 A2

July 20, 2021
algebrapolynomialIMO ShortlistIMO Shortlist 2020linear combination

Problem Statement

Let A\mathcal{A} denote the set of all polynomials in three variables x,y,zx, y, z with integer coefficients. Let B\mathcal{B} denote the subset of A\mathcal{A} formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with P,Q,RAP, Q, R \in \mathcal{A}. Find the smallest non-negative integer nn such that xiyjzkBx^i y^j z^k \in \mathcal{B} for all non-negative integers i,j,ki, j, k satisfying i+j+kni + j + k \geq n.