MathDB
Mod problem: xy = a mod z and cyclic

Source: Taiwan NMO 2006

March 21, 2006
modular arithmeticnumber theory unsolvednumber theory

Problem Statement

x,y,z,a,b,cx,y,z,a,b,c are positive integers that satisfy xya(modz)xy \equiv a \pmod z, yzb(modx)yz \equiv b \pmod x, zxc(mody)zx \equiv c \pmod y. Prove that min{x,y,z}ab+bc+ca\min{\{x,y,z\}} \le ab+bc+ca.