MathDB
Mount Inequality erupts again

Source: APMO 2024 P3

July 29, 2024
algebraAPMO 2024

Problem Statement

Let nn be a positive integer and let a1,a2,,ana_1, a_2, \ldots, a_n be positive reals. Show that i=1n12i(21+ai)2i21+a1a2an12n.\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.