MathDB
Cyclic equations

Source: IMC 2012, Day 2, Problem 4

July 29, 2012
functionlinear algebramatrixalgebrapolynomialtrigonometryfloor function

Problem Statement

Let n2n \ge 2 be an integer. Find all real numbers aa such that there exist real numbers x1,x2,,xnx_1,x_2,\dots,x_n satisfying x1(1x2)=x2(1x3)==xn(1x1)=a.x_1(1-x_2)=x_2(1-x_3)=\dots=x_n(1-x_1)=a.
Proposed by Walther Janous and Gerhard Kirchner, Innsbruck.