MathDB
2006cmo problem5

Source:

January 13, 2006
inductioninequalitiesinequalities unsolved

Problem Statement

Let {an}\{a_n\} be a sequence such that: a1=12a_1 = \frac{1}{2}, ak+1=ak+12aka_{k+1}=-a_k+\frac{1}{2-a_k} for all k=1,2,k = 1, 2,\ldots. Prove that (n2(a1+a2++an)1)n(a1+a2++ann)n(1a11)(1a21)(1an1). \left(\frac{n}{2(a_1+a_2+\cdots+a_n)}-1\right)^n \leq \left(\frac{a_1+a_2+\cdots+a_n}{n}\right)^n\left(\frac{1}{a_1}-1\right)\left(\frac{1}{a_2}-1\right)\cdots \left(\frac{1}{a_n}-1\right).