MathDB
max of x + y + z, if (x +cy<=36),(2x+ 3z>= 72), x,y,z >=0

Source: Vietnamese MO (VMO) 1966

August 22, 2018
algebrainequalitiesmaximum valueminimum value

Problem Statement

Let x,yx, y and zz be nonnegative real numbers satisfying the following conditions: (1) x+cy36x + cy \le 36,(2) 2x+3z722x+ 3z \le 72, where cc is a given positive number. Prove that if c3c \ge 3 then the maximum of the sum x+y+zx + y + z is 3636, while if c<3c < 3, the maximum of the sum is 24+36c24 + \frac{36}{c} .