Let X={(x,y)∈R2∣y≥0,x2+y2=1}∪{(x,0),−1≤x≤1} be the edge of the closed semicircle with radius 1.a) Let n>1 be an integer and P1,P2,…,Pn∈X. Show that there exists a permutation σ:{1,2,…,n}→{1,2,…,n} such that
j=1∑n∣Pσ(j+1)−Pσ(j)∣2≤8.
Where σ(n+1)=σ(1).
b) Find all sets {P1,P2,…,Pn}⊂X such that for any permutation σ:{1,2,…,n}→{1,2,…,n},
j=1∑n∣Pσ(j+1)−Pσ(j)∣2≥8. Where σ(n+1)=σ(1).