MathDB
Geometry and permutations

Source: OBM 2017

March 20, 2023
geometrycombinatorial geometrycollege contests

Problem Statement

Let X={(x,y)R2y0,x2+y2=1}{(x,0),1x1}X = \{(x,y) \in \mathbb{R}^2 | y \geq 0, x^2+y^2 = 1\} \cup \{(x,0),-1\leq x\leq 1\} be the edge of the closed semicircle with radius 1.
a) Let n>1n>1 be an integer and P1,P2,,PnXP_1,P_2,\dots,P_n \in X. Show that there exists a permutation σ ⁣:{1,2,,n}{1,2,,n}\sigma \colon \{1,2,\dots,n\}\to \{1,2,\dots,n\} such that j=1nPσ(j+1)Pσ(j)28\sum_{j=1}^{n}|P_{\sigma(j+1)}-P_{\sigma(j)}|^2\leq 8. Where σ(n+1)=σ(1)\sigma(n+1) = \sigma(1). b) Find all sets {P1,P2,,Pn}X\{P_1,P_2,\dots,P_n \} \subset X such that for any permutation σ ⁣:{1,2,,n}{1,2,,n}\sigma \colon \{1,2,\dots,n\}\to \{1,2,\dots,n\}, j=1nPσ(j+1)Pσ(j)28\sum_{j=1}^{n}|P_{\sigma(j+1)}-P_{\sigma(j)}|^2 \geq 8.
Where σ(n+1)=σ(1)\sigma(n+1) = \sigma(1).