MathDB
angle chasing, AC=1/2(AB + BC) bisector, midpoints (2014 Kyiv City MO 10.4.1)

Source:

August 6, 2020
geometryanglesangle bisector

Problem Statement

In the triangle ABCABC the side AC=12(AB+BC)AC = \tfrac {1} {2} (AB + BC) , BLBL is the bisector ABC\angle ABC, K,MK, \, \, M - the midpoints of the sides ABAB and BCBC, respectively. Find the value KLM\angle KLM if ABC=β\angle ABC = \beta