MathDB
JBMO Shortlist 2019 A5

Source:

September 12, 2020
algebrainequalities

Problem Statement

Let a,b,c,da, b, c, d be positive real numbers such that abcd=1abcd = 1. Prove the inequality 1a3+b+c+d+1a+b3+c+d+1a+b+c3+d+1a+b+c+d3a+b+c+d4\frac{1}{a^3 + b + c + d} +\frac{1}{a + b^3 + c + d}+\frac{1}{a + b + c^3 + d} +\frac{1}{a + b + c + d^3} \leq \frac{a+b+c+d}{4}
Proposed by Romania