MathDB
Problems
Contests
Undergraduate contests
Putnam
1985 Putnam
B3
Putnam 1985 B3
Putnam 1985 B3
Source:
August 5, 2019
Putnam
Problem Statement
Let
a
1
,
1
a
1
,
2
a
1
,
3
…
a
2
,
1
a
2
,
2
a
2
,
3
⋯
a
3
,
1
a
3
,
2
a
3
,
3
⋯
⋮
⋮
⋮
⋱
\begin{array}{cccc}{a_{1,1}} & {a_{1,2}} & {a_{1,3}} & {\dots} \\ {a_{2,1}} & {a_{2,2}} & {a_{2,3}} & {\cdots} \\ {a_{3,1}} & {a_{3,2}} & {a_{3,3}} & {\cdots} \\ {\vdots} & {\vdots} & {\vdots} & {\ddots}\end{array}
a
1
,
1
a
2
,
1
a
3
,
1
⋮
a
1
,
2
a
2
,
2
a
3
,
2
⋮
a
1
,
3
a
2
,
3
a
3
,
3
⋮
…
⋯
⋯
⋱
be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that
a
m
,
n
>
m
n
a_{m, n}>m n
a
m
,
n
>
mn
for some pair of positive integers
(
m
,
n
)
.
(m, n) .
(
m
,
n
)
.
Back to Problems
View on AoPS