MathDB
IMC 1996 Problem 5

Source: IMC 1996

March 5, 2021
functioncalculusderivativereal analysis

Problem Statement

i) Let a,ba,b be real numbers such that b0b\leq 0 and 1+ax+bx201+ax+bx^{2} \geq 0 for every x[0,1]x\in [0,1]. Prove that limnn01(1+ax+bx2)ndx={1aif  a<0,if  a0.\lim_{n\to \infty} n \int_{0}^{1}(1+ax+bx^{2})^{n}dx= \begin{cases} -\frac{1}{a} &\text{if}\; a<0,\\ \infty & \text{if}\; a \geq 0. \end{cases} ii) Let f:[0,1][0,)f:[0,1]\rightarrow[0,\infty) be a function with a continuous second derivative and let f(x)0f''(x)\leq0 for every x[0,1]x\in [0,1]. Suppose that L=limnn01(f(x))ndxL=\lim_{n\to \infty} n \int_{0}^{1}(f(x))^{n}dx exists and 0<L<0<L<\infty. Prove that ff' has a constant sign and minx[0,1]f(x)=L1\min_{x\in [0,1]}|f'(x)|=L^{-1}.