MathDB
Bosnia and Herzegovina TST 1999 Day 2 Problem 2

Source: Bosnia and Herzegovina Team Selection Test 1999

September 20, 2018
setProductSumnumber theorycombinatorics

Problem Statement

For any nonempty set SS, we define σ(S)\sigma(S) and π(S)\pi(S) as sum and product of all elements from set SS, respectively. Prove that a)a) 1π(S)=n\sum \limits_{} \frac{1}{\pi(S)} =n b)b) σ(S)π(S)=(n2+2n)(1+12+13+...+1n)(n+1)\sum \limits_{} \frac{\sigma(S)}{\pi(S)} =(n^2+2n)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)(n+1) where \sum denotes sum by all nonempty subsets SS of set {1,2,...,n}\{1,2,...,n\}