MathDB
France TST 2007

Source: Problem 2

May 16, 2007
inequalitiessearchsymmetryinequalities proposed

Problem Statement

Let a,b,c,da,b,c,d be positive reals such taht a+b+c+d=1a+b+c+d=1. Prove that: 6(a3+b3+c3+d3)a2+b2+c2+d2+18.6(a^{3}+b^{3}+c^{3}+d^{3})\geq a^{2}+b^{2}+c^{2}+d^{2}+\frac{1}{8}.