MathDB
IMC 1994 D1 P2

Source:

March 6, 2017
IMCreal analysis

Problem Statement

Let fC1(a,b)f\in C^1(a,b), limxa+f(x)=\lim_{x\to a^+}f(x)=\infty, limxbf(x)=\lim_{x\to b^-}f(x)=-\infty and f(x)+f2(x)1f'(x)+f^2(x)\geq -1 for x(a,b)x\in (a,b). Prove that baπb-a\geq\pi and give an example where ba=πb-a=\pi.