MathDB
Turkey NMO 2006 1st Round - P01 (Geometry)

Source:

February 2, 2013
geometrycircumcirclesymmetrypower of a point

Problem Statement

Let ABCABC be an equilateral triangle. DD and EE are midpoints of [AB][AB] and [AC][AC]. The ray [DE[DE cuts the circumcircle of ABC\triangle ABC at FF. What is DEDF\frac {|DE|}{|DF|}?
<spanclass=latexbold>(A)</span> 12<spanclass=latexbold>(B)</span> 33<spanclass=latexbold>(C)</span> 23(31)<spanclass=latexbold>(D)</span> 23<spanclass=latexbold>(E)</span> 512 <span class='latex-bold'>(A)</span>\ \frac 12 \qquad<span class='latex-bold'>(B)</span>\ \frac {\sqrt 3}3 \qquad<span class='latex-bold'>(C)</span>\ \frac 23(\sqrt 3 - 1) \qquad<span class='latex-bold'>(D)</span>\ \frac 23 \qquad<span class='latex-bold'>(E)</span>\ \frac {\sqrt 5 - 1}2