MathDB
Problems
Contests
Undergraduate contests
Putnam
1966 Putnam
A3
Putnam 1966 A3
Putnam 1966 A3
Source:
April 6, 2022
college contests
Problem Statement
Let
0
<
x
1
<
1
0<x_1<1
0
<
x
1
<
1
and
x
n
+
1
=
x
n
(
1
−
x
n
)
,
n
=
1
,
2
,
3
,
…
x_{n+1}=x_n(1-x_n), n=1,2,3, \dots
x
n
+
1
=
x
n
(
1
−
x
n
)
,
n
=
1
,
2
,
3
,
…
. Show that
lim
n
→
∞
n
x
n
=
1.
\lim_{n \to \infty} nx_n=1.
n
→
∞
lim
n
x
n
=
1.
Back to Problems
View on AoPS