MathDB
Putnam 1966 A3

Source:

April 6, 2022
college contests

Problem Statement

Let 0<x1<10<x_1<1 and xn+1=xn(1xn),n=1,2,3,x_{n+1}=x_n(1-x_n), n=1,2,3, \dots. Show that limnnxn=1.\lim_{n \to \infty} nx_n=1.