MathDB
roots of unity, geometrical and polynomial

Source: France 1991 P5

May 14, 2021
polynomialPolynomialsalgebrageometryroots of unitycomplex numbers

Problem Statement

(a) For given complex numbers a1,a2,a3,a4a_1,a_2,a_3,a_4, we define a function P:CCP:\mathbb C\to\mathbb C by P(z)=z5+a4z4+a3z3+a2z2+a1zP(z)=z^5+a_4z^4+a_3z^3+a_2z^2+a_1z. Let wk=e2kiπ/5w_k=e^{2ki\pi/5}, where k=0,,4k=0,\ldots,4. Prove that P(w0)+P(w1)+P(w2)+P(w3)+P(w4)=5.P(w_0)+P(w_1)+P(w_2)+P(w_3)+P(w_4)=5.(b) Let A1,A2,A3,A4,A5A_1,A_2,A_3,A_4,A_5 be five points in the plane. A pentagon is inscribed in the circle with center A1A_1 and radius RR. Prove that there is a vertex SS of the pentagon for which SA1SA2SA3SA4SA5R5.SA_1\cdot SA_2\cdot SA_3\cdot SA_4\cdot SA_5\ge R^5.