MathDB
Cyclic product of $1/a_i^2-1$

Source: Kyrgyzstan 2012, Problem 2

May 2, 2013
inequalitiesinequalities unsolved

Problem Statement

Given positive real numbers a1,a2,...,an {a_1},{a_2},...,{a_n} with a1+a2+...+an=1 {a_1}+{a_2}+...+{a_n}= 1 . Prove that (1a121)(1a221)...(1an21)(n21)n \left({\frac{1}{{a_1^2}}-1}\right)\left({\frac{1}{{a_2^2}}-1}\right)...\left({\frac{1}{{a_n^2}}-1}\right)\geqslant{({n^2}-1)^n} .