MathDB
Strange Inequality

Source: INMO 2020 P4

January 19, 2020
Inequalityinequalitiesn-variable inequality

Problem Statement

Let n2n \geqslant 2 be an integer and let 1<a1a2an1<a_1 \le a_2 \le \dots \le a_n be nn real numbers such that a1+a2++an=2na_1+a_2+\dots+a_n=2n. Prove thata1a2an1+a1a2an2++a1a2+a1+2a1a2an.a_1a_2\dots a_{n-1}+a_1a_2\dots a_{n-2}+\dots+a_1a_2+a_1+2 \leqslant a_1a_2\dots a_n.
Proposed by Kapil Pause