MathDB
Two sequences

Source: Iran MO 3rd round 2019 mid-terms - Number theory P1

August 1, 2019
number theory

Problem Statement

Given a number kNk\in \mathbb{N}. {an}n0\{a_{n}\}_{n\geq 0} and {bn}n0\{b_{n}\}_{n\geq 0} are two sequences of positive integers that ai,bi{1,2,,9}a_{i},b_{i}\in \{1,2,\cdots,9\}. For all n0n\geq 0 ana1a0+k | bnb1b0+k.\left.\overline{a_{n}\cdots a_{1}a_{0}}+k \ \middle| \ \overline{b_{n}\cdots b_{1}b_{0}}+k \right. . Prove that there is a number 1t91\leq t \leq 9 and NNN\in \mathbb{N} such that bn=tanb_n=ta_n for all nNn\geq N.\\ (Note that (xnxn1x0)=10n×xn++10×x1+x0(\overline{x_nx_{n-1}\dots x_0}) = 10^n\times x_n + \dots + 10\times x_1 + x_0)