modular arithmeticnumber theoryAdditive Number Theory
Problem Statement
Let p be a prime with p≡1(mod4). Let a be the unique integer such that p=a2+b2,a≡−1(mod4),b≡0(mod2) Prove that i=0∑p−1(pi3+6i2+i)=2(p2), where (pk) denotes the Legendre Symbol.