MathDB
Four variable inequality

Source: 239 2012 S4

July 30, 2020
inequalitiesalgebra

Problem Statement

For some positive numbers aa, bb, cc and dd, we know that 1a3+1+1b3+1+1c3+1+1d3+1=2. \frac{1}{a^3 + 1}+ \frac{1}{b^3 + 1}+ \frac{1}{c^3 + 1} + \frac{1}{d^3 + 1} = 2. Prove that 1aa2a+1+1bb2b+1+1cc2c+1+1dd2d+10. \frac{1 - a}{a^2 - a + 1} + \frac{1-b}{b^2 - b + 1} + \frac{1-c}{c^2 - c + 1} +\frac{1-d}{d^2 - d + 1} \geq 0.