MathDB
Algebra problem

Source: Poland - Second Round 2020 P1

February 8, 2020
algebraPoland

Problem Statement

Assume that for pairwise distinct real numbers a,b,c,da,b,c,d holds: (a2+b21)(a+b)=(b2+c21)(b+c)=(c2+d21)(c+d). (a^2+b^2-1)(a+b)=(b^2+c^2-1)(b+c)=(c^2+d^2-1)(c+d). Prove that a+b+c+d=0. a+b+c+d=0.