MathDB
(a + b + c)^2 = 3 (ab + bc + ac - x^2 - y^2 - z^2),

Source: Polish MO second round 1958 p4

August 29, 2024
algebra

Problem Statement

Prove that if (a+b+c)2=3(ab+bc+acx2y2z2), (a + b + c)^2 = 3 (ab + bc + ac - x^2 - y^2 - z^2), where a a , b b , c c , x x , y y , z z denote real numbers, then a=b=c a = b = c and x=y=z=0 x = y = z = 0 .