MathDB
IMO Shortlist 2013, Algebra #4

Source: IMO Shortlist 2013, Algebra #4

July 9, 2014
algebrainequalitiesIMO ShortlistSequenceIMO shortlist 2013A4

Problem Statement

Let nn be a positive integer, and consider a sequence a1,a2,,ana_1 , a_2 , \dotsc , a_n of positive integers. Extend it periodically to an infinite sequence a1,a2,a_1 , a_2 , \dotsc by defining an+i=aia_{n+i} = a_i for all i1i \ge 1. If a1a2ana1+na_1 \le a_2 \le \dots \le a_n \le a_1 +n and a_{a_i } \le n+i-1  \text{for}  i=1,2,\dotsc, n, prove that a1++ann2.a_1 + \dots +a_n \le n^2.