MathDB
2010 SMO (7)

Source:

November 2, 2010
inequalities unsolvedinequalities

Problem Statement

Let nn be a positive integer. The real numbers a1,a2,,ana_1,a_2,\cdots,a_n and r1,r2,,rnr_1,r_2,\cdots,r_n are such that a1a2ana_1\leq a_2\leq \cdots \leq a_n and 0r1r2rn0\leq r_1\leq r_2\leq \cdots \leq r_n. Prove that i=1nj=1naiajmin(ri,rj)0\sum_{i=1}^n\sum_{j=1}^n a_i a_j \min (r_i,r_j)\geq 0