MathDB
Tricoloured Complete Graph

Source: China Team Selection Test 3 Day 2 P2

March 25, 2015
graph theorycombinatorics

Problem Statement

Let GG be the complete graph on 20152015 vertices. Each edge of GG is dyed red, blue or white. For a subset VV of vertices of GG, and a pair of vertices (u,v)(u,v), define L(u,v)={u,v}{wwVuvw has exactly 2 red sides} L(u,v) = \{ u,v \} \cup \{ w | w \in V \ni \triangle{uvw} \text{ has exactly 2 red sides} \}Prove that, for any choice of VV, there exist at least 120120 distinct values of L(u,v)L(u,v).