MathDB
An inequality - good

Source: Indian RMO 2000 Problem 3

October 26, 2005
inequalitiesintegrationcalculusinduction

Problem Statement

Suppose {xn}n1\{ x_n \}_{n\geq 1} is a sequence of positive real numbers such that x1x2x3xnx_1 \geq x_2 \geq x_3 \ldots \geq x_n \ldots, and for all nn x11+x42+x93++xn2n1. \frac{x_1}{1} + \frac{x_4}{2} + \frac{x_9}{3} + \ldots + \frac{x_{n^2}}{n} \leq 1 . Show that for all kk x11+x22++xkk3. \frac{x_1}{1} + \frac{x_2}{2} +\ldots + \frac{x_k}{k} \leq 3.