MathDB
ISI 2020 : Problem 1

Source: B.Stat & B.Math Entrance Exam 2020

September 20, 2020
isi2020polynomialcomplex numbersalgebra

Problem Statement

Let ii be a root of the equation x2+1=0x^2+1=0 and let ω\omega be a root of the equation x2+x+1=0x^2+x+1=0 . Construct a polynomial f(x)=a0+a1x++anxnf(x)=a_0+a_1x+\cdots+a_nx^n where a0,a1,,ana_0,a_1,\cdots,a_n are all integers such that f(i+ω)=0f(i+\omega)=0 .