MathDB
A inequality

Source: Shortlist BMO 2018, A6

May 3, 2019
inequalities

Problem Statement

Let x1,x2,,xn x_1, x_2, \cdots, x_n be positive real numbers . Prove that: i=1nxi21n+1(i=1nxi)2+12(i=1nixi)2n(n+1)(n+2)(3n+1).\sum_ {i = 1}^n x_i ^2\geq \frac {1} {n + 1} \left (\sum_ {i = 1}^n x_i \right)^2+\frac{12(\sum_ {i = 1}^n i x_i)^2}{n (n + 1) (n + 2) (3n + 1)}.