MathDB
Addition of subsets

Source: China Mathematical Olympiad 2014 Q6

December 22, 2013
pigeonhole principleceiling functioncombinatorics proposedcombinatorics

Problem Statement

For non-empty number sets S,TS, T, define the sets S+T={s+tsS,tT}S+T=\{s+t\mid s\in S, t\in T\} and 2S={2ssS}2S=\{2s\mid s\in S\}. Let nn be a positive integer, and A,BA, B be two non-empty subsets of {1,2,n}\{1,2\ldots,n\}. Show that there exists a subset DD of A+BA+B such that 1) D+D2(A+B)D+D\subseteq 2(A+B), 2) DAB2n|D|\geq\frac{|A|\cdot|B|}{2n}, where X|X| is the number of elements of the finite set XX.