Turkish NMO First Round - 1999 P-26 (Number Theory)
Source:
July 3, 2012
Problem Statement
Let x, y, z be integers such that
\begin{array}{l} {x \minus{} 3y \plus{} 2z \equal{} 1} \\
{2x \plus{} y \minus{} 5z \equal{} 7} \end{array}
Then z can be<spanclass=′latex−bold′>(A)</span>3111<spanclass=′latex−bold′>(B)</span>4111<spanclass=′latex−bold′>(C)</span>5111<spanclass=′latex−bold′>(D)</span>6111<spanclass=′latex−bold′>(E)</span>None