MathDB
Turkish NMO First Round - 1999 P-26 (Number Theory)

Source:

July 3, 2012

Problem Statement

Let x x, y y, z z be integers such that \begin{array}{l} {x \minus{} 3y \plus{} 2z \equal{} 1} \\ {2x \plus{} y \minus{} 5z \equal{} 7} \end{array} Then z z can be
<spanclass=latexbold>(A)</span> 3111<spanclass=latexbold>(B)</span> 4111<spanclass=latexbold>(C)</span> 5111<spanclass=latexbold>(D)</span> 6111<spanclass=latexbold>(E)</span> None<span class='latex-bold'>(A)</span>\ 3^{111} \qquad<span class='latex-bold'>(B)</span>\ 4^{111} \qquad<span class='latex-bold'>(C)</span>\ 5^{111} \qquad<span class='latex-bold'>(D)</span>\ 6^{111} \qquad<span class='latex-bold'>(E)</span>\ \text{None}