MathDB
Understanding how some sequence behaves

Source: Science ON 2021 grade IX/1

March 8, 2021
Sequencealgebra

Problem Statement

Consider the sequence (an)n1(a_n)_{n\ge 1} such that a1=1a_1=1 and an+1=an+n2a_{n+1}=\sqrt{a_n+n^2}, n1\forall n\ge 1. <spanclass=latexbold>(a)</span><span class='latex-bold'>(a)</span> Prove that there is exactly one rational number among the numbers a1,a2,a3,a_1,a_2,a_3,\dots. <spanclass=latexbold>(b)</span><span class='latex-bold'>(b)</span> Consider the sequence (Sn)n1(S_n)_{n\ge 1} such that Sn=i=1n4(ai+12ai2)(ai+22ai+12).S_n=\sum_{i=1}^n\frac{4}{\left (\left \lfloor a_{i+1}^2\right \rfloor-\left \lfloor a_i^2\right \rfloor\right)\left(\left \lfloor a_{i+2}^2\right \rfloor-\left \lfloor a_{i+1}^2\right \rfloor\right)}. Prove that there exists an integer NN such that Sn>0.9S_n>0.9, n>N\forall n>N.
(Stefan Obadă)