MathDB
a linear diophantine equation for two sequences

Source: Turkish NMO 1996, 1. Problem

July 31, 2011
number theory proposednumber theory

Problem Statement

Let (An)n=1({{A}_{n}})_{n=1}^{\infty } and (an)n=1({{a}_{n}})_{n=1}^{\infty } be sequences of positive integers. Assume that for each positive integer xx, there is a unique positive integer NN and a unique NtupleN-tuple (x1,...,xN)({{x}_{1}},...,{{x}_{N}}) such that 0xkak0\le {{x}_{k}}\le {{a}_{k}} for k=1,2,...Nk=1,2,...N, xN0{{x}_{N}}\ne 0, and x=k=1NAkxkx=\sum\limits_{k=1}^{N}{{{A}_{k}}{{x}_{k}}}.
(a) Prove that Ak=1{{A}_{k}}=1 for some kk; (b) Prove that Ak=Ajk=j{{A}_{k}}={{A}_{j}}\Leftrightarrow k=j; (c) Prove that if AkAj{{A}_{k}}\le {{A}_{j}}, then AkAj\left. {{A}_{k}} \right|{{A}_{j}}.