MathDB
min sum a_i^2/(a_i+b_i) when sum a_i=1, sum b_i=1

Source: 2019 Argentina OMA Finals L3 p2

January 16, 2023
algebraSuminequalities

Problem Statement

Let n1n\geq1 be an integer. We have two sequences, each of nn positive real numbers a1,a2,,ana_1,a_2,\ldots ,a_n and b1,b2,,bnb_1,b_2,\ldots ,b_n such that a1+a2++an=1a_1+a_2+\ldots +a_n=1 and b1+b2++bn=1 b_1+b_2+\ldots +b_n=1. Find the smallest possible value that the sum can take a12a1+b1+a22a2+b2++an2an+bn.\frac{a_1^2}{a_1+b_1}+\frac{a_2^2}{a_2+b_2}+\ldots +\frac{a_n^2}{a_n +b_n}.