MathDB
Every integer occurs in this sequence exactly once

Source: Iran Third Round MO 1998, Exam 1, P1

October 31, 2010
modular arithmeticinductionnumber theory unsolvednumber theory

Problem Statement

Define the sequence (xn)(x_n) by x0=0x_0 = 0 and for all nN,n \in \mathbb N, x_n=\begin{cases} x_{n-1} + (3^r - 1)/2,&\mbox{ if } n = 3^{r-1}(3k + 1);\\ x_{n-1} - (3^r + 1)/2, & \mbox{ if } n = 3^{r-1}(3k + 2).\end{cases} where kN0,rNk \in \mathbb N_0, r \in \mathbb N. Prove that every integer occurs in this sequence exactly once.