MathDB
Problems
Contests
National and Regional Contests
Indonesia Contests
Indonesia MO Shortlist
2014 Indonesia MO Shortlist
C5
\binom{2014}{m}+\binom{m}{r}=\binom{2014}{r}+\binom{2014-r}{m-r}
\binom{2014}{m}+\binom{m}{r}=\binom{2014}{r}+\binom{2014-r}{m-r}
Source: INAMO Shortlist 2014 C5
July 13, 2019
combinatorics
Binomial
Problem Statement
Determine all pairs of natural numbers
(
m
,
r
)
(m, r)
(
m
,
r
)
with
2014
≥
m
≥
r
≥
1
2014 \ge m \ge r \ge 1
2014
≥
m
≥
r
≥
1
that fulfill
(
2014
m
)
+
(
m
r
)
=
(
2014
r
)
+
(
2014
−
r
m
−
r
)
\binom{2014}{m}+\binom{m}{r}=\binom{2014}{r}+\binom{2014-r}{m-r}
(
m
2014
)
+
(
r
m
)
=
(
r
2014
)
+
(
m
−
r
2014
−
r
)
Back to Problems
View on AoPS