MathDB
\binom{2014}{m}+\binom{m}{r}=\binom{2014}{r}+\binom{2014-r}{m-r}

Source: INAMO Shortlist 2014 C5

July 13, 2019
combinatoricsBinomial

Problem Statement

Determine all pairs of natural numbers (m,r)(m, r) with 2014mr12014 \ge m \ge r \ge 1 that fulfill (2014m)+(mr)=(2014r)+(2014rmr)\binom{2014}{m}+\binom{m}{r}=\binom{2014}{r}+\binom{2014-r}{m-r}