MathDB
Arranging permutations in a circle

Source: China Mathematical Olympiad 2017 Q4

November 24, 2016
combinatoricspermutations

Problem Statement

Let n2n \geq 2 be a natural number. For any two permutations of (1,2,,n)(1,2,\cdots,n), say α=(a1,a2,,an)\alpha = (a_1,a_2,\cdots,a_n) and β=(b1,b2,,bn),\beta = (b_1,b_2,\cdots,b_n), if there exists a natural number knk \leq n such that bi={ak+1i, 1ik;ai,k<in,b_i = \begin{cases} a_{k+1-i}, & \text{ }1 \leq i \leq k; \\ a_i, & \text{} k < i \leq n, \end{cases} we call α\alpha a friendly permutation of β\beta.
Prove that it is possible to enumerate all possible permutations of (1,2,,n)(1,2,\cdots,n) as P1,P2,,PmP_1,P_2,\cdots,P_m such that for all i=1,2,,mi = 1,2,\cdots,m, Pi+1P_{i+1} is a friendly permutation of PiP_i where m=n!m = n! and Pm+1=P1P_{m+1} = P_1.