MathDB
[n p/q], [cn + d],

Source: Czech and Slovak Olympiad 1989, National Round, Problem 3

September 13, 2024
number theory

Problem Statement

For given coprime numbers p>q>0p > q > 0, find all pairs of real numbers c,dc,d such that for the sets A={[npq],nN}  and  B={[cn+d],nN}A = \left\{ \left[n\frac{p}{q}\right] , n \in N \right\} \ \ and \ \ B = \{[cn + d], n \in N\} where AB=A \cap B = \emptyset, AB=NA \cup B = N, where N={1,2,3,...}N = \{1, 2, 3, ...\} is the set of all natural numbers.