MathDB
Problems
Contests
Undergraduate contests
IMC
2004 IMC
5
Problem 5 IMC 2004 Macedonia
Problem 5 IMC 2004 Macedonia
Source:
July 25, 2004
inequalities
IMC
college contests
Problem Statement
Let
S
S
S
be a set of
(
2
n
n
)
+
1
\displaystyle { 2n \choose n } + 1
(
n
2
n
)
+
1
real numbers, where
n
n
n
is an positive integer. Prove that there exists a monotone sequence
{
a
i
}
1
≤
i
≤
n
+
2
⊂
S
\{a_i\}_{1\leq i \leq n+2} \subset S
{
a
i
}
1
≤
i
≤
n
+
2
⊂
S
such that
∣
x
i
+
1
−
x
1
∣
≥
2
∣
x
i
−
x
1
∣
,
|x_{i+1} - x_1 | \geq 2 | x_i - x_1 | ,
∣
x
i
+
1
−
x
1
∣
≥
2∣
x
i
−
x
1
∣
,
for all
i
=
2
,
3
,
…
,
n
+
1
i=2,3,\ldots, n+1
i
=
2
,
3
,
…
,
n
+
1
.
Back to Problems
View on AoPS