MathDB
x_(n+1)=avg(x_n,f(x_n)) converges to fixed point of f

Source: VJIMC 1999 2.2

July 29, 2021
limitsreal analysisfunction

Problem Statement

Let a,bRa,b\in\mathbb R, aba\le b. Assume that f:[a,b][a,b]f:[a,b]\to[a,b] satisfies f(x)f(y)xyf(x)-f(y)\le|x-y| for every x,y[a,b]x,y\in[a,b]. Choose an x1[a,b]x_1\in[a,b] and define xn+1=xn+f(xn)2,n=1,2,3,.x_{n+1}=\frac{x_n+f(x_n)}2,\qquad n=1,2,3,\ldots.Show that {xn}n=1\{x_n\}^\infty_{n=1} converges to some fixed point of ff.