MathDB
BMO 2014 SL N5

Source: Balkan MO 2014 Shortlist

October 10, 2016
number theory

Problem Statement

N5\boxed{N5}Let a,b,c,p,q,ra,b,c,p,q,r be positive integers such that ap+bq+cr=aq+br+cp=ar+bp+cq.a^p+b^q+c^r=a^q+b^r+c^p=a^r+b^p+c^q. Prove that a=b=ca=b=c or p=q=r.p=q=r.