MathDB
TOT 243 1990 Spring O J1 identity with sum ( 1+ 1/2 + ...+ 1/n)^2

Source:

March 12, 2021
algebraSum

Problem Statement

For every natural number nn prove that (1+12+...+1n)2+(12+...+1n)2+...+(1n1+12)2+(1n)2=2n(1+12+...+1n)\left( 1+ \frac12 + ...+ \frac1n \right)^2+ \left( \frac12 + ...+ \frac1n \right)^2+...+ \left( \frac{1}{n-1} + \frac12 \right)^2+ \left( \frac1n \right)^2=2n- \left( 1+ \frac12 + ...+ \frac1n \right) (S. Manukian, Yerevan)