MathDB
Problems
Contests
National and Regional Contests
Indonesia Contests
Indonesia MO Shortlist
2014 Indonesia MO Shortlist
A1
\lfloor a^{2014} \rfloor + \lfloor b^{2014} \rfloor =\lfloor a \rfloor ^{2014}
\lfloor a^{2014} \rfloor + \lfloor b^{2014} \rfloor =\lfloor a \rfloor ^{2014}
Source: INAMO Shortlist 2014 A1
May 21, 2019
Floor
algebra
floor function
Problem Statement
Let
a
,
b
a, b
a
,
b
be positive real numbers such that there exist infinite number of natural numbers
k
k
k
such that
⌊
a
k
⌋
+
⌊
b
k
⌋
=
⌊
a
⌋
k
+
⌊
b
⌋
k
\lfloor a^k \rfloor + \lfloor b^k \rfloor = \lfloor a \rfloor ^k + \lfloor b \rfloor ^k
⌊
a
k
⌋
+
⌊
b
k
⌋
=
⌊
a
⌋
k
+
⌊
b
⌋
k
. Prove that
⌊
a
2014
⌋
+
⌊
b
2014
⌋
=
⌊
a
⌋
2014
+
⌊
b
⌋
2014
\lfloor a^{2014} \rfloor + \lfloor b^{2014} \rfloor = \lfloor a \rfloor ^{2014} + \lfloor b \rfloor ^{2014}
⌊
a
2014
⌋
+
⌊
b
2014
⌋
=
⌊
a
⌋
2014
+
⌊
b
⌋
2014
Back to Problems
View on AoPS