MathDB
\lfloor a^{2014} \rfloor + \lfloor b^{2014} \rfloor =\lfloor a \rfloor ^{2014}

Source: INAMO Shortlist 2014 A1

May 21, 2019
Flooralgebrafloor function

Problem Statement

Let a,ba, b be positive real numbers such that there exist infinite number of natural numbers kk such that ak+bk=ak+bk\lfloor a^k \rfloor + \lfloor b^k \rfloor = \lfloor a \rfloor ^k + \lfloor b \rfloor ^k . Prove that a2014+b2014=a2014+b2014\lfloor a^{2014} \rfloor + \lfloor b^{2014} \rfloor = \lfloor a \rfloor ^{2014} + \lfloor b \rfloor ^{2014}