MathDB
Geometric Inequality - [UKRMO 2009 Grade 11]

Source:

January 23, 2011
inequalitiestrigonometryfunctionalgebradomaingeometry unsolvedgeometry

Problem Statement

Point OO is inside triangle ABCABC such that AOB=BOC=COA=120.\angle AOB = \angle BOC = \angle COA = 120^\circ . Prove that AO2BC+BO2CA+CO2ABAO+BO+CO3.\frac{AO^2}{BC}+\frac{BO^2}{CA}+\frac{CO^2}{AB} \geq \frac{AO+BO+CO}{\sqrt 3}.