MathDB
xy+yz+zx=1 implies inequality

Source: Turkey, TST D1, P3

May 10, 2006
inequalitiesinequalities proposedalgebra

Problem Statement

If x,y,zx,y,z are positive real numbers and xy+yz+zx=1xy+yz+zx=1 prove that 274(x+y)(y+z)(z+x)(x+y+y+z+z+x)263. \frac{27}{4} (x+y)(y+z)(z+x) \geq ( \sqrt{x+y} +\sqrt{ y+z} + \sqrt{z+x} )^2 \geq 6 \sqrt 3.