MathDB
Problems
Contests
National and Regional Contests
Vietnam Contests
Vietnam National Olympiad
2007 Vietnam National Olympiad
2
Vietnamese Olympiad national 2007, problem 2
Vietnamese Olympiad national 2007, problem 2
Source:
February 8, 2007
number theory unsolved
number theory
Problem Statement
Let
x
,
y
x,y
x
,
y
be integer number with
x
,
y
≠
−
1
x,y\neq-1
x
,
y
=
−
1
so that
x
4
−
1
y
+
1
+
y
4
−
1
x
+
1
∈
Z
\frac{x^{4}-1}{y+1}+\frac{y^{4}-1}{x+1}\in\mathbb{Z}
y
+
1
x
4
−
1
+
x
+
1
y
4
−
1
∈
Z
. Prove that
x
4
y
44
−
1
x^{4}y^{44}-1
x
4
y
44
−
1
is divisble by
x
+
1
x+1
x
+
1
Back to Problems
View on AoPS